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The non-equilibrium dynamics of matter excited by light may produce electronic phases that do
not exist in equilibrium, such as laser-induced high-Tc superconductivity. Here we simulate the dy-
namics of a metal driven at t = 0 by a pump that excites dipole-active vibrational modes that couple
quadratically to electrons, and study the evolution of its electronic and vibrational observables. We
provide evidence for enhancement of local electronic correlations, including double occupancy, ac-
companied by rapid loss of long-range spatial phase coherence. Concurrently, the onsite vibrational
reduced density matrix evolves from its initial coherent state to one with a predominantly diago-
nal structure whose distribution qualitatively resembles the coherent state Poisson character. This
rapid loss of coherence controls the electronic dynamics as the system evolves towards a correlated
electron-phonon long-time state. We show that a simple model based on an effective disorder po-
tential generated by the oscillator dephasing dynamics for the electrons provides an explanation for
the flattening in momentum of electronic correlations. Our results provide a basis within which to
understand correlation dynamics of vibrationally coupled electrons in pump-probe experiments.

I. INTRODUCTION

Major efforts in condensed-matter physics are cur-
rently focused on the means to induce novel phases of
matter and harness their properties for practical gain.
For many years such phases were thought to robustly ex-
ist only as equilibrium, thermodynamic states. The po-
tential out-of-equilibrium induction of transient phases,
enabled by recent experimental advances in the creation
and utilization of tailored time-resolved external fields
that can excite specific degrees of freedom, may bypass
these limitations [1, 2], opening a door to the realization
and control of new electronic states.

Optical, mode-specific excitation of atomic vibrations
[3] serves as one broad class of out-of-equilibrium tech-
nique that has been shown to lead to dramatic modifica-
tions in electronic behavior [4–6], including the possible
induction of a superconducting transition at a critical
temperature larger than its static counterpart in K3C60

[7], YBa2Cu3O6.5 [8] and organic salts [9]. In general,
since optically accessible phonons are long-wavelength
dipole-active modes, these phonons do not couple lin-
early to electrons, and therefore non-linearities are ex-
pected to govern the dynamics in centrosymmetric sys-
tems [10–13], stimulating many interesting theoretical
proposals [13–20]. One particular mechanism [13] posits
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that since direct, local interaction between electrons and
photo-excited phonons must depart from that of conven-
tional linear (Holstein [21] and Fröhlich [22, 23]) mod-
els, one must consider a quadratic coupling of driven
phonons to the electron density (Appendix A). An ap-
proximate analysis of such a model suggests that opti-
cal driving of quadratically coupled phonons implies a
particular form of electronic squeezing of phonons that
results in both an effective electron-electron attraction
and a random phonon-state–dependent onsite potential
for the electrons (Appendix B).

In this work, we use exact numerical methods to ex-
plore the emergent electronic behavior in such a driven,
non-equilibrium system. Combining a tensor-network ap-
proach for time evolution of an infinite one-dimensional
system on short timescales with propagation to long
times using direct Krylov subspace methods for finite-size
systems, we elucidate the spatially resolved dynamics of
electrons coupled to pumped phonons. Our main results
are:
1. Phonon-induced disorder: We observe fast growth
of local electronic correlations after the application of the
pump. A dramatic flattening in momentum of charge,
spin and pairing correlations rapidly follows, pointing to
loss of spatial phase coherence. We study the coherence
of the local oscillator and find that its reduced density
matrix in the phonon-number basis rapidly relaxes from
its initial coherent state [24] to a predominantly diago-
nal matrix. The diagonal matrix elements/populations in
the phonon-number basis form a unimodal distribution
very similar to the Poisson distribution that describes the
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eigenvalues of the coherent state density matrix. Thus,
from the perspective of the electrons, the rapid phonon
dephasing induces a random onsite potential, which de-
stroys the (quasi-)long-range character of the initially
present normal state electronic correlations. This behav-
ior is one of the main predictions of [13].
2. Correlated electron-phonon steady state: We
provide evidence that the system evolves to a steady state
at long times characterized by sizeable correlations be-
tween electrons and phonons. The early-time dynamics
that follow the pump already indicate rapid growth of
local, negative correlations between the electron density
n̂ and the oscillator quadratic displacement X̂2 at a given
site and anticorrelations of X̂ at adjacent sites, which sig-
nals a tendency towards charge flow between neighboring
sites, resulting in enhanced double occupancy. This dy-
namical process quenches the Friedel oscillations [25] of
the electron density profile, and manifests as a space-time
dependent feature in the density-density correlation func-
tion that spreads spatially outwards along a “light-cone”
defined by the Fermi velocity [26]. However, behind the
light cone, very quickly the density-density correlation
function becomes basically structureless, suggesting that
the asymptotic state possesses a large degree of random-
ness. At long times, we find an overall increase in the
magnitude of the electron-phonon interaction term, im-
plying evolution towards a strongly correlated long-time
electron-phonon state.
3. Quadratically coupled electrons exhibit a
greater response to optical pumping than linearly
(Holstein) coupled electrons: We compare the dy-
namical electronic behavior in response to a pump in
the quadratic model against that in the linear (Holstein)
counterpart. We observe larger double occupancy and
greater large-amplitude response of momentum-resolved
correlation peaks in the quadratic model. This highlights
the importance of the quadratic coupling in irradiated
materials.

II. PHYSICAL SETUP

We consider a metal whose vibrational modes are ex-
cited at initial time by a light field, e.g., an optical pump.
Radiation creates a dipolar coherent phonon field [24] on
every site, which couples non-linearly to the local electron
density. The Hamiltonian that governs the dynamics is
given by

H =He +Hph + Ve-ph. (1)

Here He = −J ∑i,σ c
†
i,σci+1,σ + H.c. characterizes the dy-

namics of electrons of spin flavor σ ∈ {↑, ↓} via the fermion

creation (annihilation) operator c†i,σ (ci,σ) and defines the
total charge density n̂i = ∑σ n̂i,σ at site i. The electrons of
this irradiated system couple locally to the excited vibra-
tions via the the dominant symmetry-allowed interaction

[13, 27]

Ve-ph = gq∑
i

(n̂i − 1)(b†i + bi)
2. (2)

The phonon energy-scale is set by Hph = ω∑i (b
†
ibi +

1
2
),

which characterizes a local optical Einstein phonon mode
with frequency ω (h̵ = 1), described by the boson creation

(annihilation) operator b†i (bi).
We simulate the time evolution of the initial state

∣Ψ⟩ = ∣FS⟩⊗⊗
i

∣α⟩i . (3)

Here ∣FS⟩ = ∏k≤kF c
†
k,σ ∣0⟩ with kF = π/2 describes a

metal formed from a Fermi sea of spinful electrons in
a half-filled (⟨n̂i⟩ = 1) one-dimensional (1D) lattice and

∣α⟩ = e−
∣α∣2
2 ∑ν

αν√
ν!

represents a coherent state of am-

plitude α written as an appropriate superposition of
phonon-number states ∣ν⟩. Since the wavelength of the
pump field extends beyond the lattice scale, we assume it
instigates a perfectly phase-coherent initial product state
of onsite phonon coherent states ⊗i ∣α⟩i.

This model implies an equilibrium renormalization of
the oscillator stiffness K → K[1 + 4

gq
ω
(⟨n̂⟩i − 1)]. The

onsite harmonic oscillator is stable so long as ∣gq ∣ <
ω
4

[13]
(Appendix A). We consider here gq ≤ 0.25 for ω = π/2, π
to study dynamics of the non-linear model for couplings
ranging from weak to strong. We use α =

√
2 in what

follows.

III. METHODS

We simulate the time evolution of ∣Ψ⟩ representing the
metal on an infinite chain irradiated at initial time t = 0
by a pump via the infinite time-evolved block decimation
(iTEBD) algorithm [28] utilizing the TeNPy Library [29].
We use up to dν = 12 phonon states to represent the local
phonon Hilbert space. We allow the bond dimension χ to
grow without saturation in the iTEBD time evolution,
and converge our results with respect to the truncation
error εTEBD. This allows access to time t ∼ 5J for which
we find εTEBD = 10−3.5 achieves satisfactory convergence.
We refer the reader to Appendix C for more information.
To shed light on the long-time behavior we also propagate
the initial state using direct Krylov subspace methods
for finite system sizes L = 3 − 6 with twisted boundary
conditions, see Appendix D for more details.

IV. RESULTS

Fig. 1 demonstrates the energy redistribution amongst
the different system subsectors in the course of the time
evolution on timescales ranging from short (left panel)
to long (right panel), as the system approaches its long-
time limit of a correlated electron-phonon steady state.
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FIG. 1. Energy redistribution among the different system subsectors. Infinite system iTEBD simulations (left panel)
of the time dependence of the electronic (top), phononic (middle) and electron-phonon (bottom) energy densities show a trend
with larger gq of rapid heating of the electronic subsector, accompanied by transient relaxation of the electron-phonon subsector.
Exact Krylov propagation of small systems L = 3 − 6 (right panel) for the largest coupling strength gq = 0.25 to asymptotically
long times showing the net change relative to the initial state in electronic (left), phononic (center) and electron-phonon (right)
energy densities confirms a correlated electron-phonon steady state, as evidenced by the considerable flow of energy from the
electron-phonon subsector to the electronic subsector. The y-axis labels of the net change in energy densities have been placed
at the top of the corresponding plots. Here He0 ≡He(0).
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FIG. 2. Dynamics of charge and charge-phonon correlations. Left column: Time evolution of charge-lattice correlation
CXr(t) = ⟨n̂iX̂2

i+r(t)⟩ − ⟨n̂i(t)⟩⟨X̂2
i+r(t)⟩ (top) contrasted against that of ⟨X̂2

i (t)⟩ (bottom), and of the (connected) density-

density correlation Dr(t) = ⟨n̂in̂i+r(t)⟩ normalized with respect to its initial-time value Dr(0) (middle). Here X̂i :=
√

1
2Mω
(b†i +

bi), where M is the oscillator mass, which we set to unity, M = 1. Note the violation of the relation (∆Xi(t))2 = ⟨X̂2
i (t)⟩ −

⟨X̂i(t)⟩2 = 1
2ω

for t ⪆ 0.15 2π
ωJ

, an indication of deviation of the oscillator from an ideal coherent state. Right column: Onset of a
light-cone profile in the normalized density-density charge correlations; here Cr(t) = ⟨n̂in̂j(t)⟩−⟨n̂i(t)⟩⟨n̂j(t)⟩ is normalized with
respect to its initial-time metallic Friedel oscillations profile Cr(0). The diamond symbols mark the inflection point preceding
the second maximum for the different r lines, which we use in the inset to find a best fit of the light-cone charge propagation
tc versus rc (dashed line), yielding an estimate for charge velocity: vc ≈ 3.5J . We use gq = 0.25 and ω = π/2 in this figure.



4

k[π]0.0
0.2

0.4
0.6 0.8 1.0

t[ 2π
ωJ ]

0.0
0.4

0.8

1.2

Ck(t)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

k[π]0.0
0.2

0.4
0.6 0.8 1.0

t[ 2π
ωJ ]

0.0
0.4

0.8

1.2

Sk(t)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

k[π]

0.00.20.4
0.6

0.8
1.0

t[ 2π
ωJ ]

0.0
0.4

0.8

1.2

Pk(t)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0 1

t[ 2π
ωJ

]

0.00

0.25

0.50

0.75

1.00

1.25 Cπ(t)

gq = 2−2

gq = 2−3

gq = 2−4

0 1

t[ 2π
ωJ

]

Sπ(t)

0 1

t[ 2π
ωJ

]

0.00

0.25

0.50

0.75

1.00

1.25P0,π(t)

k = 0

k = π

FIG. 3. Dynamics of momentum-resolved electronic correlations. We study the evolution with time of momentum-
resolved charge Ck(t) = F{Cr(t)}, spin Sk(t) = F{Sr(t)} and Pairing Pk(t) = F{Pr(t)} correlation functions for gq = 0.25 and
ω = π/2 (three-dimensional plots) and the dependence on time of certain k (0, π) correlations for ω = π/2 (bottom, right). Note
the k-axis of the Pk(t) plot has been inverted for better visibility, and the y-axis labels of the 0/π correlations in the bottom right
panel have been placed at the top of the corresponding plots. Here Cr ≡ ⟨n̂in̂i+r⟩ − ⟨n̂i⟩⟨n̂i+r⟩, Sr ≡ ⟨(n̂i,↑ − n̂i,↓)(n̂i+r,↑ − n̂i+r,↓)⟩
and Pr ≡ ⟨c†i,↑c

†
i,↓ci+r,↓ci+r,↑⟩. F denotes the Fourier transform. Charge, spin and pairing correlations all rapidly flatten in the

course of the dynamics. Note conservation of C0(t) and S0(t) in the dynamics.

Consider the largest coupling gq = 0.25 (dark lines in left
panel). At early times t ≤ 2π

ωJ
, the electron subsystem

absorbs energy from the phonons, and the phonon en-
ergy density oscillates about a value close to its initial
value, while the electron-phonon energy density becomes
more negative, see left panel of Fig. 1. At asymptotically
long times, we observe an overall flow of energy from
the phonon and electron-phonon subsectors to the elec-
tron subsector (right panel of Fig. 1). Importantly, the
increase in magnitude of the (negative) electron-phonon
correlation term implies a long-time correlated electron-
phonon state.

Correlations between electrons and phonons already
manifest in the early-time dynamics, as we demonstrate
in Fig. 2. Consider the charge-phonon correlation func-
tion CXr(t) = ⟨n̂iX̂

2
i+r(t)⟩− ⟨n̂i(t)⟩⟨X̂

2
i+r(t)⟩ (Fig. 2, left;

top). For r = 0, n̂ rapidly becomes negatively correlated

with X̂2. Note that ⟨n̂i(t)⟩ = 1 throughout the dynamics
in the translationally invariant system under considera-
tion and ⟨X̂2

i (t)⟩ (dashdotted line, bottom) remains pos-
itive under time evolution. The substantial local, neg-

ative correlations in CX0(t) therefore imply a flow of
electrons between neighboring sites. The same analysis
applied to CX1(t) reveals a positive correlation between
electron density and phonons separated by a single site
with a dynamical profile somewhat similar (albeit of op-
posite sign) to CX0(t). With a slightly delayed onset,
much weaker positive correlations build up at larger r
in CXr(t). The interplay between onsite and nearest-
neighbour correlations in CXr(t) reflects the tendency
of charge to flow from a site to its neighbours, imply-
ing that doublons (doubly occupied sites) and holons
(empty sites) emerge in the dynamics on such timescales.
Indeed, in the middle panel, we observe a rapid en-
hancement of local electron density-density correlations
⟨n̂in̂i(t)⟩ = ⟨n̂i⟩ + 2⟨n̂i,↑n̂i,↓(t)⟩, accompanied by the sup-
pression of ⟨n̂in̂i+1(t)⟩ due to doublon creation, as ex-
pected if there is a tendency towards formation of an al-
ternating pattern of doubly and singly occupied sites. For
times greater than t ≈ 0.175[ 2π

ωJ
], ⟨n̂in̂i+1(t)⟩ begins to

grow and becomes positive, whilst ⟨n̂in̂i+2(t)⟩ diminishes,
and a wavefront behavior in r appears to arise. In fact,
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FIG. 4. Dynamics of a metal subjected to a quadratic coupling, dephasing phonon-generated disorder.
Left column: Rapid loss of coherence in the onsite phonon reduced density matrix ρRph shown via analysis of η(t) ≡
∑i≠j ∣ρRphi,j(t)∣/∑i≠j ∣ρ

R
phi,j
(0)∣. This is verified in Krylov propagation of systems of increasing size (left), and can be already

observed on short timescales for infinite systems studied by iTEBD (center column, top). Thin lines in orange hues are fits of
η(t) to an exponential decay to a plateau (top). In the long-time limit, η(t∞) approaches increasingly vanishing values with
larger system sizes (bottom). Center column: We use the approach to diagonality of ρRph in iTEBD simulations (top) to invoke
a semi-classical approximation in which we treat the phonons classically, as characterized by their reduced density matrix. We
extract a disorder potential from the coupled model for an exemplary time tq = 2π

ωJ
via singular value decomposition of ρRph,

which we use to evaluate an effective classical disorder potential W(i) given by the expectation value of X̂2 in the singular
vectors iS(ρR

ph
) (middle), and weighed by the probability distribution Λ(i) given by the singular values (bottom). Right column:

We model the dynamics of the electrons quenched to the dephasing phonon potential given byW(i) weighted by the probability
distribution Λ(i). A free metal subjected to this disorder potential at initial time exhibits, after disorder averaging, a flattening
charge correlator Ck(t) with a suppressed peak, qualitatively supporting the result of the fully coupled model observed in
Fig. 3. We use gq = 0.25 and ω = π/2 in the simulations of the fully coupled model used in this figure.

when normalized against the t = 0 metal Friedel density
profile, a density-density correlation light-cone [26, 30]
propagating outwards in r can be clearly seen (Fig. 2,
right). A characteristic feature that emerges for larger
r at later time delays closely trails the second-in-time
maximum. Thus, to sharply characterize the light-cone,
we track the inflection point preceding that maximum
(diamond symbols). A line of best fit through these data
points (Fig. 2, right; inset) reveals linear charge propa-
gation with a velocity vc ≈ 3.5J , slightly larger than the
free metal Fermi velocity 2kFJ = πJ . On the timescales
accessed by iTEBD, we found no evidence for a wave-
front propagating in either of CXr(t) or ⟨X̂i(t)X̂i+r(t)⟩,
reflecting the resistance to propagation of the dispersion-
less Einstein oscillator modes of the initial-time (gq = 0)
state.

The behavior exhibited by CXr(t) and Cr(t) im-
plies non-equilibrium induction of enhanced double occu-
pancy, which we have directly verified. (For a comparison
against the Holstein model, see Fig. 5 and accompanying
discussion below).

Turning to Fig. 3, we study the evolution with time
of the momentum-resolved charge Ck(t), spin Sk(t) and
pairing Pk(t) correlations to fully characterize the elec-

tronic features. Apart from a fast initial growth of
Cπ(t) due to the enhanced double occupancy, we ob-
serve rapid flattening in momentum space of these corre-
lations, marking the loss of spatial phase coherence, de-
spite the persistent growth of local density-density and
charge-phonon correlations, indicating that the pattern
of doubly and singly occupied sites is becoming random.
This points to a more subtle role played by phonons in
the dynamics, as we explain below.

To understand the nature of these featureless corre-
lations, we analyze the loss of coherence with time of
the onsite oscillator reduced density matrix ρRph(t) in the
phonon occupation-number basis. We study the quan-
tity η(t) ≡ ∑i≠j ∣ρ

R
phi,j

(t)∣/∑i≠j ∣ρ
R
phi,j

(0)∣ as a measure of

decoherence (Fig. 4 left, top and center, top panels). We
find that η(t) drops sharply from its initial value of unity
corresponding to the pure initial phonon state to below
50% at t ∼ 4J−1 and to vanishingly small values in the
long-time limit. This implies that ρRph(t) evolves from its

initial pure coherent state ∣α⟩ ⟨α∣ to a mixed state that
is predominantly diagonal in the phonon-number basis,
signalling rapid dephasing of states with different phonon
occupation number. The dephased configuration exhibits
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a unimodal distribution of diagonal matrix elements. Our
numerics reveals a strong sensitivity of the electron dy-
namics to the approach of ρRph to diagonality, as also
corroborated in finite-size systems in which we find the
phonon coherence and energy densities both relax on the
same characteristic timescale t ∼ 5J . This suggests that
the diagonal matrix elements of the X̂2 operator can be
thought of as a slowly evolving classical dynamical onsite
potential for the electrons, in other words, as a phonon-
generated disorder that destroys long-ranged electronic
density wave order, as predicted in Ref. [13].

To verify this picture we compute the dynamics of a
metal quenched at initial time to a static, onsite disor-
der potential extracted from the dephased phonon state,
given by W(i) and weighted by the probability distri-
bution Λ(i), where i ≡ iS(ρR

ph
) labels the singular vec-

tors of ρRph, see Fig. 4, center column. We find that the
momentum-resolved charge dynamics exhibits a rapid
flattening over relatively short times (Fig. 4, right col-
umn), bolstering the dephasing phonon-induced disor-
der picture of electron dynamics in the pumped metal.
The pump-activated transient phonon-induced disorder
in electron dynamics presents an opportunity to explore
the interplay between correlations and randomness in
out-of-equilibrium electronic matter.

Before we conclude, we contrast the dynamics of our
non-linear model to that governed by the Holstein model
(which, for dipole-active phonons, does not respect in-
version symmetry). We use two methods to choose an
appropriate coupling strength in the Holstein model cor-
responding to a given coupling strength of the quadratic
model against which we perform a comparison, see Ap-
pendix E for details. In one approach we choose the Hol-
stein coupling that yields the same equilibrium ground
state double occupancy as in the quadratic model. In the
other the Holstein coupling is chosen to produce the same
double occupancy as that obtained analytically from a
disentangling transformation [13] derived as a low-energy
description of our model. Fig. 5 shows that for both
choices the Holstein model exhibits a much weaker re-
sponse to the pump than does the quadratic model, ex-
hibiting both a much weaker enhancement of double oc-
cupancy (uppermost panel), and smaller large-amplitude
dynamics in momentum-resolved electronic correlations
(lower panels) including flattening of Pk(t) (lowermost
panel). We remark that the dynamics governed by the
quadratic model exhibits very weak behavior in the zero-
pump limit α = 0 (not shown), highlighting the suscepti-
bility of the non-linear coupling to photo-excited vibra-
tions.

V. CONCLUSIONS

Prior studies of non-linear electron-phonon dynamics
have relied on approximate low-energy treatments when
no small parameter exists. Our exact numerical approach
to spatially resolved dynamics of a pumped non-linear
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FIG. 5. Quadratically coupled model versus Holstein
model. A comparison of the pump-induced dynamics in the
quadratic coupling model to that of the Holstein model for ap-
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model induces a more appreciably enhanced double occu-
pancy (uppermost panel) and causes a greater response in
electron correlations (lower three panels) including the flat-
tening of pairing tendencies (lowermost panel) than its Hol-
stein model counterpart.

electron-phonon systems fills an urgent need. We provide
a detailed exact analysis of short-time (up to t ∼ 2π

ωJ
)

dynamics of an infinite non-linear electron-phonon cou-
pled metal upon coherent excitation of vibrational modes
by light using iTEBD. We supplement this by direct
Krylov propagation of small systems to asymptotically
long times. We explicitly describe the flow towards a cor-
related electron-phonon steady state at long times, the
indication of which already manifests on short timescales.
Remarkably, although we consider a spatially uniform
system evolving after application of a spatially uniform
pump field, the key feature of the long-time state is the
appearance of properties consistent with a high degree
of effective disorder that dominates the physical prop-
erties. These properties are a consequence of the very
rapid loss of coherence of the initial phonon state cre-
ated by the pump, which we found to be directly tied to
the buildup of disorder, implying that the intermediate-
and long-time state is an incoherent superposition of dif-
ferent oscillator configurations on different sites. These
incoherent phonon configurations result in a dynamic ef-
fective disorder potential for the electrons, which leads
to the suppression of long-range charge, spin and pairing
correlations.

The single-particle distribution function of the long-
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time electronic state found in finite-size systems for α =√
2 may be fit to a Fermi-Dirac distribution with a tem-

perature Te ∼ 2J (we could not find a good fit for long-
time states obtained for small α values). On the other
hand, the corresponding Poisson-like phonon state ex-
hibits a maximum in occupation numbers ν and therefore
does not fit a thermal Planck distribution. Of course, in
a strongly coupled electron-phonon system a Planck dis-
tribution is not expected. However, the high-energy tail
should still decay in a manner controlled by the equi-
librium temperature. A fit of the exponentially decaying
phonon occupation tail to the Planck distribution yields a
pseudo-temperature Tph ∼ 5J . This mismatch between Te
and Tph along with the large contribution of the electron-
phonon interaction term to the total energy suggests that
the terminal state obtained in finite-size simulations may
not be thermal. Determining the fate of the established
long-time entangled electron-phonon state in which the
phonons in effect provide strong onsite potential fluctu-
ations that substantially broaden all momentum-space
distribution functions and fully disentangling the con-
tributions of electron heating from localization due to
the transient phonon-induced disorder to this entangled
electron-phonon state are beyond the scope of this paper,
and are left to future work.

A crucial question, not resolved by this work, relates to
the possibility of pump-induced superconductivity as pre-
dicted in Ref. [13]. In our calculations no evidence for su-
perconductivity is found and we only find weak evidence
for charge density wave correlations: the results are more
consistent with the system falling within the disorder-
dominated Anderson insulating regime of the phase dia-
gram presented in Ref. [13]. One possibility would be that
superconducting and density wave regimes either do not
exist or are not accessible with the current pump protocol
(perhaps because the pump transfers too much energy to
the electronic subsystem). A second possibility would be
that the one-dimensional model considered here disfavors
superconductivity. In fact, it has been shown that quan-
tum fluctuations can destroy superconductivity in dirty
superconductors below a mobility threshold [31]. In one
dimension, all single-particle states are localized in pres-
ence of a static disorder potential. Despite that in one-
dimensional systems superconductivity can overcome the
localizing tendency of disorder to some extent [32], the ef-
fects of disorder are stronger than in higher dimensions.
The accurate simulation of pump-induced dynamics in
higher-dimensional systems in the thermodynamic limit
faces challenges, but is urgently needed.

Lastly, we noted that the quadratic model reacts more
strongly to a pump than the linear Holstein model, high-
lighting the importance of this mechanism in pump-probe
experiments, e.g. [33]. Our results generally apply to light
irradiated centrosymmetric crystals. Questions such as
the consideration of additional electron-vibration interac-
tions consistent with inversion symmetry [20, 34], which
may aid in the stabilization of a transient superconduct-
ing state, as well as how the the electron-phonon steady

state exposed in this work manifests experimentally are
also important open challenges and call for the devel-
opment of new tools for the study of out-of-equilibrium
non-linear electron-phonon problems.
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Appendix A: Stability condition of the quadratic
electron-phonon model

The model we consider reads

H =He +Hph + Ve-ph, (A1)

where

He = −J∑
i,σ

c†i,σci+1,σ +H.c., (A2)

Hph = ω∑
i

(b†ibi +
1

2
) , (A3)

Ve-ph = gq∑
i

(n̂i − 1)(b†i + bi)
2. (A4)

A stable harmonic oscillator mode localized on a given
site implies an oscillator stiffness K > 0. To derive the
condition for stability of the coupled electron-phonon sys-
tem, we rewrite H in terms of the harmonic oscillator
displacement X̂i and momentum P̂i operators. We make
use of the relation (h̵ = 1)

bi =

√
Mω

2
(X̂i +

1

mω
P̂i), (A5)

where M is the oscillator mass, to obtain

Hph =∑
i

1

2
KX̂2

i +∑
i

1

2M
P̂ 2
i (A6)

Ve-ph = 2
gq

ω
K∑

i

(n̂i − 1)X̂2
i . (A7)
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Thus, the quadratic electron-phonon coupling renormal-
izes the oscillator stiffness on any given site

K →K[1 + 4(n̂ − 1)
gq

ω
]. (A8)

Demanding that K > 0, we arrive at the stability condi-
tion of the electron-phonon model:

∣gq ∣ <
ω

4
. (A9)

For spinless electrons n̂ − 1 → n̂ − 1/2 and the stability
condition, then, is ∣gq ∣ <

ω
2

.

Appendix B: Squeezing transformation

Kennes et al. [13] found a transformation that
rescales the phonon coordinate, rotating the Hamilto-
nian Eq. (A1) into a frame in which the electrons
and phonons are approximately decoupled. The elec-
tron density-dependent transformation H → UHU †, with

U = eS , S = −∑j ζj(b
†
jb

†
j − bjbj) and squeezing parameter

ζi = −
1
4

ln[1 + 4
gq
ω
(n̂i − 1)], yields

β†
i ≡ e

Sb†ie
−S

= cosh(ζi)b
†
i + sinh(ζi)bi,

βi ≡ e
Sbie

−S
= cosh(ζi)bi + sinh(ζi)b

†
i . (B1)

Here β†
i creates a squeezed phonon state on site i. Un-

der this transformation, Hph +Ve-ph is recast into a form
completely diagonal in the squeezed phonon occupation
basis:

H = eSHee
−S

+∑
i

ω

√

1 + 4
gq

ω
(n̂i − 1)(β†

i βi +
1

2
).

(B2)

Taylor expanding to O

⎧⎪⎪
⎨
⎪⎪⎩

(
gq
ω
)
2⎫⎪⎪
⎬
⎪⎪⎭

, one finds

H = eSHee
−S

+∑
i

ω(β†
i βi +

1

2
)

+∑
i

[2(gq +
g2q

ω
)(β†

i βi +
1

2
)](n̂i − 1)

+∑
i

−4
g2q

ω
(β†
i βi +

1

2
)n̂i,↑n̂i,↓. (B3)

To this order the electron-phonon coupling is completely
local and the squeezed phonon number on each site is
conserved. The second line shows that the phonon oc-
cupation on site i changes the electron’s local chemical
potential. This gives rise to a disorder potential, static
at this level of approximation. Higher-order terms ne-
glected in the transformation will lead to the evolution

of β†
i βi, changing the disorder from static to dynamic.

Phonons also mediate an effective local electron-electron
attraction (third line). The eSHee

−S term can be treated
analytically within an incoherent approximation, see [13]
for details.

Appendix C: Details of iTEBD simulations

The quadratic electron-phonon model connects a
phonon state of occupancy ν only to states with ν′ = ν±2.
These processes conserve phonon parity. We take advan-
tage of this symmetry and parallelize most simulations
over even and odd phonon parity subsectors employing
up to dν = 12 states, see discussion below. We use a
fourth-order trotterization scheme for the iTEBD time
evolution with time-steps dt. After each time-step, we
truncate the Schmidt values of a two-site unit cell state
embedded in an infinite system; the discarded Schmidt
values squared εTEBD denotes the error due to trunca-
tion. We ensure that the bond dimension χ of the time-
evolved state after each time-step does not saturate an
upper bound we set, which we take to be, for the data
points we study, in the range of 3000 − 5000. We con-
verge our results with respect to both dt and εTEBD, as
we explain below.

1. Convergence with respect to dt and εTEBD

Errors due to dt compete with those due to εTEBD. A
sufficiently small dt ensures negligible Trotter error. At
the same time, however, it results in more frequent in-
cidents of truncation of the Schmidt values, each of an
amount

√
εTEBD, thus leading to overall greater Schmidt

truncation in order to access a specific desired final time
tf . A sufficiently small εTEBD would eliminate Schmidt
errors to within a desirable accuracy, but instead leads to
faster growth of entanglement, which scales exponentially
in time, and this limits the accessible tf . To ensure ac-
curate results one needs to converge results with respect
to the competing effects due to dt and εTEBD, finding
an optimal compromise of a sufficiently small (but not
too small) dt to eliminate Trotter error given a reason-
ably small εTEBD to ensure minimal error due to Schmidt
truncation. In Fig. 6, we demonstrate convergence for two
quantities Pk(t) and Ck(t). The same choices of dt and
εTEBD allows convergence of all other quantities consid-
ered in this work to the same standard or better. This
allows us to approach tf ∼ 5J−1.

2. Convergence with respect to dν

We converge results for electronic and phononic ob-
servables with respect to the phonon Hilbert space di-
mension dν within a reasonable accuracy of a few per-
cent. Fig. 7 shows satisfactory convergence of represen-
tative quantities for dν = 12, which we use to obtain the
data presented in the main text.
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FIG. 6. Convergence of time-evolved charge Ck(t) and
pairing Pk(t) correlations with respect to truncation
error εTEBD and time-step dt used in iTEBD simula-
tions. We use gq = 0.25 and ω = π/2 here, which enables the
assessment of convergence for the strongest coupling consid-
ered. We observe satisfactory convergence for εTEBD = 10−3.5

and dt = 0.1 on the accessible timescales.
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FIG. 7. Convergence of time-evolved energy densities
⟨He(t)⟩, ⟨Hph(t)⟩ and ⟨Ve-ph(t)⟩ with respect to local
phonon Hilbert space dimension dν used in iTEBD
simulations. We use εTEBD = 10−3.5 in the simulation per-
formed here for gq = 0.25 and ω = π/2. We find that dν = 12
suffices to achieve convergence within a reasonable bound at
all accessible times.

Appendix D: Details of propagation using direct
Krylov subspace methods

We perform exact time evolution via direct Krylov
space methods for system sizes L = 3 − 6, employing
parallelization with respect to the local bosonic parity
sectors. We use a twisted boundary condition: ei(π/2)L in
the simulations presented in the main text. For small sys-
tem sizes, convergence with respect to the local bosonic
Hilbert space dimension can be achieved, while for L = 6
we are restricted to a truncated bosonic Hilbert space
dimension dν = 10.

Appendix E: Choice of Holstein couplings used to
compare to a quadratic coupling

The Holstein model with electron-phonon coupling

gH(n̂i − 1)(b†i + bi) can be characterized via the dimen-

sionless coupling λH =
g2H
2ωJ

, the ratio of the ground-state
energy in the atomic limit J = 0 to that in the free elec-
tron limit gH = 0. To compare the Holstein and quadratic
models one must find the λH most comparable to a given
quadratic coupling. We consider the two following ap-
proaches to estimate measures of equivalence of coupling
strengths:

a. Coupling strengths that give the same double occu-
pancy in the static equilibrium limit:

We find for ω = π/2, gq = 0.25 and gH = 0.29 (λH ≈

0.027) yield the same double occupancy in the ground
state of a half-filled chain.

b. Coupling strengths that give the same effective
electron-electron interaction obtained from a disentan-
gling transformation:

The Lang-Firsov transformation [35] demonstrates
that Holstein phonons mediate an effective electron-

electron attraction UH = −2
g2H
ω

≡ −4λHJ . The squeez-
ing transformation derived above demonstrates that
quadratic phonons mediate an effective electron-electron

attraction Uq = −4
g2q
ω
(nB,i + 1/2), where nB,i = β†

i βi,

see Eq. (B3). The two models yield the same U when
UH = Uq, leading to the condition:

λH =
g2q

ωJ
(⟨nB⟩ + 1/2), (E1)

where we replaced the phonon number operator by its
average over the phonon distribution ⟨nB⟩. Since the ra-
diation field creates a coherent state with amplitude α,
we take an estimate of ⟨nB⟩ = α2 the mean boson number
to find λH to be used to compare against a given gq. We

thus judge for α =
√

2 and ω = π/2 λH ≈ 0.1 to be equiv-
alent to gq = 0.25 in the sense that it leads to an effective
electron-electron interaction approximately equal to that
obtained from the pumped quadratic model (as analyzed
within the squeezing transformation).
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To summarize, we employ two methods to estimate
a value of λH to compare to a given value of gq. One
approach assumes the two models are comparable when
they yield the same double occupancy in the static
ground-state limit, the other compares the undriven Hol-

stein model to the driven quadratic model, making use
of analytical results. We can conceptually use these two
values of λH as approximate lower and upper bounds for
comparison against a given value of gq.
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[22] H. Fröhlich, H. Pelzer, and S. Zienau, “Properties of
slow electrons in polar materials,” Philos. Mag. 41, 221
(1950).
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