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We present a machine-learning method for predicting sharp transitions in a Hamiltonian phase diagram
by extrapolating the properties of quantum systems. The method is based on Gaussian process regression
with a combination of kernels chosen through an iterative procedure maximizing the predicting power of
the kernels. The method is capable of extrapolating across the transition lines. The calculations within a
given phase can be used to predict not only the closest sharp transition but also a transition removed from
the available data by a separate phase. This makes the present method particularly valuable for searching
phase transitions in the parts of the parameter space that cannot be probed experimentally or theoretically.
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It is very common in quantum physics to encounter a
problem with the Hamiltonian

H ¼ H0 þ αH1 þ βH2 ð1Þ

whose eigenspectrum can be readily computed or measured
in certain limits of α and β, e.g., at α ¼ 0 or at α ≫ β, but
not at arbitrary values of α and β. For such problems, it is
necessary to interpolate the properties of the quantum
system between the known limits or extrapolate from a
known limit. Both the interpolation and the extrapolation
become exceedingly complex if the system properties
undergo sharp transitions at some values of α and/or β.
Such sharp transitions separate the phases of the
Hamiltonian (1). Because the wave functions of the
quantum system are drastically different in the different
phases [1], an extrapolation of quantum properties across
phase transition lines is generally considered unfeasible.
Here, we challenge this premise. We note that, while

certain properties of quantum systems undergo a sharp
change at a phase transition, other properties evolve
smoothly through the transition. Using the example of
three different lattice models, we show that the evolution of
such properties within a given phase contains information
about the transitions and the same properties beyond the
transitions. We present a machine-learning method that
can be trained by the evolution of such properties in a
given phase to predict the sharp transitions and the
properties of the quantum system in other phases by
extrapolation. The importance of this result is clear.
Characterizing quantum phase transitions embodied in
model Hamiltonians is one of the foremost goals of
quantum condensed-matter physics. Our work illustrates
the possibility of predicting transitions at Hamiltonian

parameters, where obtaining the solutions of the
Schrödinger equation may not be feasible.
The application of machine-learning (ML) tools for

solving problems in condensed-matter physics has recently
become popular [2–34]. In all of these applications, ML is
used as an efficient method to solve one of three problems:
interpolation, classification, or clustering. Interpolation
amounts to fitting multidimensional functions or func-
tionals, whereas classification and clustering are used to
separate physical data by properties. For example, ML
can be used to identify quantum phases of lattice spin
Hamiltonians [5,6,12,16,19,23,24]. However, in order to
identify a quantum phase transition by interpolation and/or
classification, the aforementioned ML models must be
trained (fed on input) by the data describing both phases
on both sides of the transition. The distinct feature of the
present work is a ML method that requires information
from only one phase and extrapolates the properties of
lattice models to and across the transitions. To illustrate
the method, we consider four different problems: lattice
polaron models with zero, one, and two sharp transitions
and the mean-field Heisenberg model with a critical
temperature. In all cases, we show that the phase transitions
(or lack thereof) can be accurately identified.
We first consider a generalized lattice polaron model

describing an electron in a one-dimensional lattice with
N → ∞ sites coupled to a phonon field:

H ¼
X
k

ϵkc
†
kck þ

X
q

ωqb
†
qbq þ Ve-ph; ð2Þ

where ck and bq are the annihilation operators for the
electron with momentum k and phonons with momentum
q, ϵk ¼ 2t cosðkÞ and ωq ¼ ω ¼ const are the electron and
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phonon dispersions, respectively, and Ve-ph is the electron-
phonon coupling. We choose Ve-ph to be a combination
of two qualitatively different terms Ve-ph ¼ αH1 þ βH2,
where

H1¼
X
k;q

2iffiffiffiffi
N

p ½sinðkþqÞ−sinðkÞ�c†kþqckðb†−qþbqÞ ð3Þ

describes the Su-Schrieffer-Heeger (SSH) [35] electron-
phonon coupling and

H2 ¼
X
k;q

2iffiffiffiffi
N

p sinðqÞc†kþqckðb†−q þ bqÞ ð4Þ

is the breathing-mode model [36]. The lowest energy
eigenstate of the model (2) represents polarons known to
exhibit two sharp transitions as the ratio α=β increases from
zero to large values [37]. At α ¼ 0, the model (2) describes
breathing-mode polarons, which have no sharp transitions
[38]. At β ¼ 0, the model (2) describes SSH polarons,
which exhibit one sharp transition in the polaron phase
diagram [35]. At these transitions, the ground state
momentum and the effective mass of the polaron change
sharply.
Method.—We use Gaussian process (GP) regression as

the prediction method [39], described in detail in
Supplemental Material [40]. The goal of the prediction
is to infer an unknown function fð·Þ given n inputs xi and
outputs yi. The assumption is that yi ¼ fðxiÞ. The function
f is generally multidimensional, so xi is a vector.
GPs do not infer a single function fð·Þ but rather a

distribution over functions, pðfjX; yÞ, where X is a vector
of all known xi and y is a vector of the corresponding
values yi. This distribution is assumed to be normal. The
joint Gaussian distribution of random variables fðxiÞ is
characterized by a mean μðxÞ and a covariance matrix
Kð·; ·Þ. The matrix elements of the covariance Ki;j are
specified by a kernel function kðxi;xjÞ that quantifies the
similarity relation between the properties of the system at
two points xi and xj in the multidimensional space.
Prediction at x� is done by computing the conditional

distribution of fðx�Þ given y and X. The mean of the
conditional distribution is [39]

μðx�Þ ¼
Xn
i

dðx�;xiÞyi ¼
Xn
i

αikðx�;xiÞ; ð5Þ

where α ¼ K−1y and d ¼ Kðx�;XÞ⊤KðX;XÞ−1. The pre-
dicted mean μðx�Þ can be viewed as a linear combination of
the training data yi or as a linear combination of the kernels
connecting all training points xi and the point x�, where the
prediction is made. In order to train a GP model, one must
choose an analytical representation for the kernel function.

To solve the interpolation problem, one typically uses a
simple form for the kernel. In the limit of large n, any
simple kernel function produces accurate interpolation
results [39]. For example, k can be approximated by any
of the following functions:

kLINðxi;xjÞ ¼ x⊤
i xj þ α; ð6Þ

kRBFðxi;xjÞ ¼ exp

�
−
1

2
r2ðxi;xjÞ

�
; ð7Þ

kMATðxi;xjÞ ¼
�
1þ

ffiffiffi
5

p
rðxi;xjÞ þ

5

3
r2ðxi;xjÞ

�

× exp ½−
ffiffiffi
5

p
rðxi;xjÞ�; ð8Þ

kRQðxi;xjÞ ¼
�
1þ jxi − xjj2

2αl2

�−α
; ð9Þ

where r2ðxi;xjÞ ¼ ðxi − xjÞ⊤ ×M × ðxi − xjÞ and M is a
diagonal matrix with different length scales ld for each
dimension of xi. The length-scale parameters ld, l, and α
are the free parameters. We describe them collectively by θ.
A GP is trained by finding the estimate of θ (denoted by θ̂)
that maximizes the logarithm of the marginal likelihood
function:

logpðyjX; θ;MiÞ ¼ −
1

2
y⊤K−1y −

1

2
log jKj − n

2
log 2π:

ð10Þ

For the extrapolation problem, the prediction produced
by Eq. (5) is clearly sensitive to the particular choice of the
kernel function. While different interpolation problems can
be solved with the same mathematical form of the kernel
function, different extrapolation problems generally require
different kernels. The key for successful extrapolation is
thus to find the appropriate kernel function. Because we
aim to solve a variety of different problems with varying
underlying physics, the procedure for constructing the
kernel must be fully automated and independent of the
particular problem under consideration.
Here, we follow Refs. [47,48] to build a prediction

method based on a combination of products of different
kernels (6)–(9). To select the best combination, we use the
Bayesian information criterion (BIC) [49],

BICðMiÞ ¼ logpðyjX; θ̂;MiÞ −
1

2
jMij log n; ð11Þ

where jMij is the number of kernel parameters of
kernel Mi. Here, pðyjX; θ̂;MiÞ is the marginal likelihood
for an optimized kernel θ̂. It is impossible to train and
try models with all possible combinations of kernels. We
use an iterative procedure schematically depicted in Fig. 1.
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We begin by training a GP model with each of the kernels
(6)–(9). These kernels have one (LIN), d (RBF and MAT),
and two (RQ) free parameters [50]. The algorithm then
selects the kernel—denoted k0—that leads to the model
with the highest BIC and combines k0ð·; ·Þ with each of
the original kernels ki defined by Eqs. (6)–(9). The kernels
are combined as products k0ð·; ·Þ × kið·; ·Þ and additions
k0ð·; ·Þ þ kið·; ·Þ. Each kernel in the combination is scaled
by a constant factor, which introduces another free param-
eter for the product or two parameters for the sum. For each
of the possible combinations, a new GP model is con-
structed and a BIC is computed. The kernel yielding the
highest BIC is then used as a new base kernel k0, and the
procedure is iterated. This fully automated algorithm is
applied here to four different problems, yielding physical
extrapolation results, thus showing that Eq. (11) can be

used as a criterion for building prediction models capable
of physical extrapolation.
Results.—All GP models are trained by the dispersions

EðKÞ, where E is the polaron energy and K is the polaron
momentum. These dispersions are calculated for infinite
lattices using the momentum average (MA) approach from
previous work [37,51–55]. The models are trained to
predict the polaron energy as a function of K and the
Hamiltonian parameters α, β, and ω. The vectors xi are thus
xi ⇒ fK;ω; α; βg, while fð·Þ is the polaron energy. Once
the models are trained, we numerically compute the ground
state momentum KGS and the polaron effective mass from
the predicted dispersions [56]. Note that we always train all
models by the polaron dispersions in one phase and the
models have no a priori information about the existence of
another phase(s). The transition is encoded in the evolution
of the polaron band as a function of x. All results are in
units of t.
Figure 2 shows the predictions for the pure SSH polaron

model (β ¼ 0, one sharp transition in the polaron phase
diagram). The vertical lines show where the training points
end and the extrapolation begins. As can be seen, the GP
models predict accurately the location of the transition and
can be used for quantitative extrapolation in a wide range
of the Hamiltonian parameters to strong electron-phonon
coupling. All models, including the ones trained by
quantum calculations far removed from the transition point,
predict accurately the location of the transition. As the
coupling to phonons increases, the polaron develops a
phonon-mediated next-nearest-neighbor hopping term:
EðKÞ ¼ −2t cosðKÞ þ 2t2ðλSSHÞ cosð2KÞ, where t2ðλSSHÞ
is a function of λSSH [35]. The transition occurs when the

FIG. 1. Schematic diagram of the kernel construction method
employed to develop a Gaussian process model with extrapola-
tion power. At each iteration, the kernel with the highest Bayesian
information criterion (11) is selected. The labels in the boxes
correspond to the kernel functions defined in (6)–(9).

FIG. 2. Extrapolation of the polaron ground state momentum KGS (left) and effective mass m� (right) across the sharp transition at
λSSH ¼ 2α2=tℏω ≈ 0.6 for the model (2) with β ¼ 0. The black solid curves are the accurate quantum calculations. The symbols are the
predictions of the GP models trained by the full polaron dispersions EðKÞ at values of λSSH ≤ λ�, where λ� is shown by the vertical lines
(solid for circles, dashed for triangles, and dot-dashed for pentagons). The GP models are used for interpolation (open symbols) and
extrapolation (full symbols). The algorithm of Fig. 1 yields the kernel kRQ × kLIN þ kRBF for the GP models represented by the triangles
and pentagons and kRQ × kLIN × kMAT for the circles. Left inset: The polaron dispersions used as input (dashed curves) and predicted by
the GP model (solid curves) with λ� ¼ 0.5 with the triangles showing the position of the dispersion minimum. Right inset: The polaron
dispersions predicted by the GP model trained with λ� ¼ 0.6 (solid curves) in comparison with the quantum calculations (symbols).
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second term dominates. Figure 2 shows that the GP models
trained using the algorithm of Fig. 1 extrapolate accurately
this evolution of the polaron energy.
The power of this method is better illustrated with the

example of the mixed breathing-mode–SSH model (α ≠ 0,
β ≠ 0) with three phases [37]. The dots in Fig. 3 represent
the points of the phase diagram used for training the
GP model with the optimized kernels. Remarkably, the
model trained by the polaron dispersions all entirely in
one phase predicts both transitions. The location of the
first transition is predicted quantitatively. The second
transition is predicted qualitatively. If the model is trained
by the polaron properties in two side phases and the
prediction is made by extrapolation to low values of λSSH
(lower panel in Fig. 3), both transition lines are predicted
quantitatively.

As a third independent test, we applied the method
to the Holstein polaron model defined by Eq. (2) with
Ve-ph ¼ const

P
k;qc

†
kþqckðb†−q þ bqÞ. Such a model is

known to have no transitions [38]. We find that the method
presented here can extrapolate accurately the polaron
dispersions to a wide range of the Hamiltonian parameters
and yields predictions that exhibit no sign of transitions.
Since it is often not feasible to explore the entire phase
diagram with rigorous quantum calculations, especially for
models with many independent parameters, predicting the
absence of transitions is as important as locating different
phases.
Finally, we demonstrate the method on an analytically

soluble model. We consider the Heisenberg model
H ¼ −ðJ=2ÞPi;jS⃗i:S⃗j in the nearest-neighbor approxima-
tion. Employing a mean-field description, the resulting free
energy density at temperature T is [1,57,58]

fðT;mÞ ≈ 1

2

�
1 −

Tc

T

�
m2 þ 1

12

�
Tc

T

�
3

m4; ð12Þ

where m is the magnetization and Tc ¼ 1.25J the critical
temperature of the phase transition. T > Tc corresponds
to the paramagnetic phase, while T < Tc is the ferromag-
netic phase.
We train GP models by the results of Eq. (12) in the

paramagnetic phase far away from Tc (shaded region in the
inset in Fig. 4). We then extrapolate the function fðT;mÞ
across the critical temperature and compute the order
parameter m0 which minimizes fðT;mÞ. Figure 4 demon-
strates thatm0 thus predicted can be accurately extrapolated
across Tc and far into a different phase. This demonstrates
again the general idea behind the technique developed here:

FIG. 3. The polaron ground state momentum KGS for the mixed
model (2) as a function of β=α for λSSH ¼ 2α2=tℏω. The color
map is the prediction of the GP models. The curves are the
quantum calculations from Ref. [37]. The models are trained by
the polaron dispersions at the parameter values indicated by
the white dots. No other information is used. The optimized
kernel combination is ðkMAT þ kRBFÞ × kLIN (upper panel) and
ðkMAT × kLIN þ kRBFÞ × kLIN (lower panel).

FIG. 4. GP prediction (solid curves) of the free energy density
fðT;mÞ of the mean-field Heisenberg model produced by
Eq. (12) (dashed curves). Inset: The order parameter m0 that
minimizes fðT;mÞ: symbols, GP predictions; dashed curve,
from Eq. (12). The GP models are trained with 330 points at
1.47 < T < 2.08 (shaded area) and −1.25 < m < 1.25.
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useML to predict the evolution of continuous functions that
encodes phase transitions.
It is important to point out that the iterative kernel

selection algorithm of Fig. 1 must be analyzed before the
present method is used for the quantitative extrapolation.
As the iterations continue, the kernels become more
complex, more prone to overfitting, and more difficult to
optimize. The quantitative accuracy of the prediction may,
therefore, decrease. Supplemental Material [40] illustrates
the convergence to Figs. 2–4 with the kernel optimization
levels and also the increase of the prediction error after a
certain number of levels. To prevent this problem, we stop
the kernel optimization when the prediction error is
minimal, as explained in Supplemental Material [40].
We emphasize that this does not affect the prediction of
the transitions: Once a certain level of Fig. 1 is reached,
kernels from the subsequent optimization levels predict the
transitions. We have confirmed this for all the results
(Figs. 2–4) presented here. Thus, if the goal is to predict
the presence or absence of transitions, this method can be
used without validation. It is sufficient to check that
subsequent levels of the kernel optimization do not produce
or eliminate transitions. In order to predict quantitatively
the quantum properties by extrapolation, the training data
must be divided into the training and validation sets. The
models must then be trained with the training set and the
error calculated with the validation set. The kernel opti-
mization must then be stopped, when the error is minimal.
This is a common approach to prevent the overfitting
problem in ML with artificial neural networks.
Summary.—We have presented a powerful method for

predicting sharp transitions in Hamiltonian phase diagrams
by extrapolating the properties of quantum systems. The
method is based on Gaussian process regression with a
combination of kernels chosen through an iterative pro-
cedure maximizing the predicting power of the kernel. The
model thus obtained captures the change of the quantum
properties as the system approaches the transition, allowing
the extrapolation of the physical properties, even across
sharp transition lines.
We believe that the present work is the first example of

the application of ML for the extrapolation of physical
observables for quantum systems. We have demonstrated
that the method is capable of using the properties of the
quantum system within a given phase to predict not only
the closest sharp transition but also a transition removed
from the training points by a separate phase. This makes the
present method particularly valuable for searching phase
transitions in the parts of the parameter space that cannot
be probed experimentally or theoretically. Given that the
training of the models and the predictions do not present
any numerical difficulty [59], the present method can also
be used to guide rigorous theory or experiments in search
for phase transitions. Finally, we must note that, although
the present extrapolation method works well for all four

problems considered, we cannot prove that it is accurate for
an arbitrary system so the predictions must always be
validated, as is common in machine learning.
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The purpose of this supplemental material is to provide details of the numerical calculations we present in this
work. Sections I and II discuss the machine-learning methods and Sections III – the quantum calculations used to
train the ML models.

I. GP REGRESSION WITH KERNEL COMBINATIONS

Gaussian process (GP) regression is a kernel-based probabilistic non-parametric supervised ML algorithm [1].
Within the GP regression framework, the prediction is a normal distribution characterized by a mean µ(·) and a
standard deviation σ(·), given as

µ(x∗) = K(x∗,x)>
[
K(x,x) + σ2

nI
]−1

y (1)

σ(x∗) = K(x∗,x∗)−K(x∗,x)>
[
K(x,x) + σ2

nI
]−1

K(x∗,x). (2)

Here,

• x = (x1,x2, ...,xn)> is a vector of n points in a multi-dimensional parameter space, where the GP model is
trained;

• xi is a vector of variable parameters.

For the case of the polaron models considered here,
a xi ⇒ {polaron momentum K, Hamiltonian parameter α, Hamiltonian parameter β,phonon frequency ω}.
For the case of the Heisenberg model considered here, xi ⇒ {Temperature T, magnetization m̃};

• y = f(x) is a vector of quantum mechanics results at the values of the parameters specified by xi

For the case of the polaron models considered here, y ⇒ polaron energy E.
For the case of the Heisenberg model considered here, y ⇒ free energy density;

• x∗ is a point in the parameter space where the prediction y∗ is to be made;

• K(x,x) is the n × n square matrix with the elements Ki,j = k(xi,xj) representing the covariances between
y(xi) and y(xj). The elements k(xi,xj) are represented by the kernel function.

The GP models are constructed (in the language of ML “trained”) by the quantum mechanics results y at the
parameters in x. The unknown in this model is the kernel function. The goal of the training is thus to find the best
representation for the kernel function k(·, ·).

In a standard procedure for training a GP model, one begins by assuming some simple analytical functional form
for k(·, ·). For example, one assumes one of the following functional forms:

kLIN(xi,xj) = x>i xj (3)

kRBF(xi,xj) = exp

(
−1

2
r2(xi,xj)

)
(4)

kMAT(xi,xj) =

(
1 +
√

5r(xi,xj) +
5

3
r2(xi,xj)

)
× exp

(
−
√

5r(xi,xj)
)

(5)

kRQ(xi,xj) =

(
1 +
|xi − xj |2

2α`2

)−α
(6)

where r2(xi,xj) = (xi − xj)
> ×M × (xi − xj) and M is a diagonal matrix with different length-scales `d for each

dimension of xi. This list represents some of the most commonly used kernel functions.
The parameters of this analytical form are then found by maximizing the log marginal likelihood function,

log p(y|x,θ) = −1

2
y>K−1y − 1

2
log |K| − n

2
log(2π), (7)

where θ denotes collectively the parameters of the analytical function for k(·, ·) and |K| is the determinant of the
matrix K.
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The marginal likelihood can also be used as a metric to compare different kernels. However, care must be taken
when kernels with different numbers of parameters are to be compared. The second term of Eq. (7) directly depends
on the number of parameters in the kernel, which makes the log marginal likelihood inappropriate to compare kernels
with different numbers of parameters. To overcome this issue, we compare the predictive power of different kernels
using the Bayesian Information criterion (BIC) [3]

BIC(Mi) = log p(y|x, θ̂,Mi)−
1

2
|Mi| log n (8)

where |Mi| is the number of kernel parameters of the kernel Mi. Here, p(y|x, θ̂,Mi) is the marginal likelihood for

the optimized kernel θ̂ which maximizes the logarithmic part. The last term in Eq. (8) acts to penalize kernels with
larger number of parameters to reduce overfitting, thus making the predicting model more robust.

A. Learning with kernel combinations

Typically, GP regression is used for interpolation of the training points y(xi). For this problem, it is sufficient to
choose one of the kernel functions above. The choice of the function will determine the efficiency of the interpolation
model, i.e. the number n of training points required for accurate predictions between the training points. However,
any of the kernel functions will work for interpolation.

As discussed in the main text, this is not the case for extrapolation. For accurate extrapolation, one needs to
increase the complexity of kernels in order to capture the physical behaviour of the training data y(xi) well. However,
complex kernels come with a risk of overfitting. In addition, the ambiguity as to the choice of the kernel function
increases with the complexity of the kernel function. So, the question is, how to increase the complexity of the kernel
functions in a systematic way that prevents overfitting and results in a model that captures the physical behaviour
of the training results?

Ideally, one should choose a kernel function that captures all of the physical behaviour of the training data. However,
as we explained above, hand-crafting the ‘best’ kernels is not an easy task [1, 5]. In addition, hand-crafting kernels
may introduce biases, limiting the generality of the prediction. In this work, we do not use any prior information for
the selection of the kernels and we do not hand-craft kernels.

Here, we follow Refs. [2, 5] to increase the complexity of kernels by combining the simple functions (3) - (6) into
products and sums. Combining different kernels can enhance the learning capacity of the GP regression [2].

For example, the first kernel combination that we describe here is the addition of two kernels like kMAT + kMAT or
kRQ+kMAT . This new type of kernel form is capable of learning long-range and short-range correlations between data
points. Multiplication of kernels is also another possible algebraic operation, for example, kRQ × kMAT . Multiplying
any of the kernels by the linear kernel, e.g., kRBF ×kLIN , leads to a GP regression that can learn increasing variations
of the data. The dot-product/linear kernel, Eq. (3), can be used to construct polynomial kernels. For example, to
describe quadratic functions, one could multiply this kernel by itself: kLIN × kLIN .

It becomes clear that combining kernels in GP regression can provide an advantage in describing a variety of
mathematical functions to accurately make predictions. This is the basis behind using GP regression with kernel
combinations for extrapolating observables. To build more robust and flexible GP models, we employ the greedy
search algorithm and the BIC to algorithmically construct the ’optimal’ model. The greedy search is an ‘optimal
policy’ algorithm [4] that selects the kernel assumed optimal based on the BIC at every step in the search. The
underlying assumption is that the BIC represents the optimal measure of the kernel performance.

The number of free parameters for each of the simple kernels used in this work are

• kLIN (xi,xj)⇒ 1

• kRBF (xi,xj)⇒ d

• kMAT (xi,xj)⇒ d

• kRQ(xi,xj)⇒ 2,

where d is the dimensionality or number of features of the data. For example, for the results presented in Figure 4 of
the main text d = 2, xi = [T,m].

Every kernel considered in this work is scaled by the constant kernel, kc(xi,xj) = const. The total number of
parameters of a GP model with any simple kernel considered in this work is thus increased by one due to kc(xi,xj)×
kX(xi,xj), where kX is any of the kernels listed above.
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As the algorithm depicted in Figure 1 progresses to lower levels, the number of free kernel parameters increases
and the kernels become rather complex. We express such kernels as the sum of products of kernels by distributing all
products of sums. For example, the kernel used to construct Figure 3 (lower panel) of the main text is,

(kMAT × kLIN + kRBF )× kLIN = kMAT × kLIN × kLIN + kRBF × kLIN ,

which including the constant kernel is,(
kc × kMAT × kLIN × kLIN

)
+
(
kc × kRBF × kLIN

)
.

B. Numerical difficulty of training and using the GP models

In order to train a GP model, one needs to maximize the log-likelihood function in Eq. (7) by iteratively computing
the inverse and the determinant of the correlation matrix K. The dimension of this matrix is n × n, where n is the
number of training points. In this work, n ≈ 200− 1000, as discussed in the next section. Therefore, training a single
GP model presents no numerical difficulty and typically takes seconds to minutes of CPU time.

In order to find the optimal kernels using the algorithm depicted in Figure 1 of the main manuscript, one needs to
train many GP models. As the levels in Figure 1 become deeper, kernels become more complex and the algorithm
requires the iterative construction of more GP models. For levels 5 to 10 of Figure 1, the kernel optimization may
take up to a few hours of CPU time on a single compute core.

Using the model to predict the quantum properties involves the evaluation of the vector - matrix product in Eq.
(1). The size of the vector n and the dimension of the matrix is n × n, where n ≈ 200 − 1000, as before. (Since the
matrix K is, at this point known, the prediction may actually be reduced to a scalar product of two vectors of size
n). The numerical evaluation of these products presents no computational difficulty.

II. SPECIFIC DETAILS OF THE EXTRAPOLATION METHOD

The value of a quantum observable depends on the parameters of the Hamiltonian. One can learn the behavior of
quantum observables using different ML models using the following relation

E = 〈Ĥ(K,α, β, . . . )〉 ∼ F(K,α, β, . . . ) (9)

where F(·) is any ML model that can learn the dependence between the Hamiltonian parameters and the quantum
observable. In the present work, the quantum observables are the polaron ground state energy and the free-energy
density denoted as E(·). We use the algorithm proposed above to learn F(·) and hence to extrapolate quantum
observables.

The results of Figure 2 of the main text are for the polaron model with β = 0. This figure presents the extrapolation
with three different ML models, represented by circles, triangles and pentagons.

For the predictions represented by triangles:

• The GP model is trained with 210 points distributed in the ranges 0 ≤ K ≤ π, 0 ≤ λSSH ≤ 0.5

For the predictions represented by circles:

• The GP model is trained with 245 points distributed in the ranges 0 ≤ K ≤ π, 0 ≤ λSSH ≤ 0.6

For the predictions represented by pentagons:

• The GP model is trained with 175 points distributed in the ranges 0 ≤ K ≤ π, 0 ≤ λSSH ≤ 0.4

The results of Figure 3 of the main text are for the polaron model with α 6= 0 and β 6= 0. This figure presents the
extrapolation with the ML models, trained by the quantum calculations at the Hamiltonian parameters shown by
white circles in Figure 3 of the main text. For each training point (each white circle), we use 16 energy points in in
the range 0 ≤ K ≤ π for the total of 900 training points for the upper panel of Figure 3 and 960 training points for
the lower panel of Figure 3.
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A. Effective mass and ground state momentum from extrapolated results

Given the GP extrapolated E(K), we compute KGS and m∗ as follows. KGS is the value of the momentum that
minimizes E(K)

KGS(α, β, · · · ) = arg min
K

E(K,α, β, · · · ) (10)

which depends on the Hamiltonian parameters α and β. For all results presented here, we compute KGS by searching
for the value where E(K) is minimum. This procedure is depicted in Figure SM 1.

The polaron effective mass is,

m∗(λSSH) =

[
∂2EK(λSSH)

∂K2

]−1 ∣∣∣
K=KGS

(11)

To compute m∗, we numerically evaluate the second derivative of the extrapolated E(K).
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K/
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S

Fig. SM 1: SSH Polaron dispersions predicted (dashed curves) with a GP model trained by the quantum calculations
(black solid curves) from Ref. [6] to result in the kernel kRQ × kLIN + kRBF . The red crosses indicate the positions where

the polaron dispersion reaches its minimum. Inset: the value of KGS as a function of λSSH .

B. Prediction accuracy convergence (number of training points)

Figure SM 2 illustrates how the accuracy of the extrapolation improves with the number of training points. We
consider the pure SSH polaron model with one sharp transition. The GP models are trained by quantum results at
λSSH ≤ 0.4, which is far below the transition point λSSH ≈ 0.6, and used to predict the polaron properties after the
transition, at λSSH > 0.6. In all the cases presented, the kernel search algorithm depicted in Figure 1 of the main
manuscript is run for three depth levels.

All models are trained by the quantum results at 5 values of λSSH ≤ 0.4, but with a different number of points at
0 ≤ K ≤ π: 15 (triangles), 25 (squares), 35 (circles). Figure SM 2 clearly shows that the accuracy of the prediction
dramatically improves with the number of training points.

C. Prediction accuracy convergence (kernel complexity dependence)

For clarity, here, we use the notation “GPL-X” for the kernel with the highest BIC obtained after X depth levels
of the algorithm depicted in Figure 1 of the main manuscript. “X” thus denotes the depth of the kernel optimization
diagram shown in Figure 1 of the main manuscript. Figures SM 3 and SM 4 show how the accuracy of the prediction
of the sharp transitions shown in Figure 3 of the main text improves as the kernel complexity increases.
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Fig. SM 2: Ground state momentum KGS for the predicted SSH Polaron dispersions with a GP model trained at
λSSH ≤ 0.4 by thee different sets of points: blue triangles – 15 points per value of λSSH (75 points total); orange squares
– 25 points per value of λSSH (125 points total); green circles – 35 points per value of λSSH (175 points total). The black

solid curve is the rigorous result from Ref. [6].
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Fig. SM 3: Improvement of the phase diagram shown in Figure 3 (upper panel) of the main manuscript with the kernel
complexity increasing as determined by the algorithm depicted in Figure 1 of the main manuscript. The panels correspond
to the optimized kernels GPL-0 (left), GPL-1 (center), GPL-2 (right), where “GPL-X” denotes the optimal kernel obtained

after X depth levels.

For all of the calculations presented, we verified that increasing X (the number of levels in the kernels optimization)
does not change the predictions of the phase transitions. This applies to all results in Figures 2, 3 and 4 in the main
manuscript as well as the Holstein model results discussed in the main text. Once a phase transition (or the absence
of transitions) is identified, the prediction of the phase transition (or the absence of transitions) is reliable. In other
words, once a certain level of kernel optimization is reached, all kernels from the subsequent optimization levels predict
the phase transitions or the absence of the phase transitions correctly.

However, as the complexity of the kernels increases with each new level X, it becomes more difficult to find the
optimal kernel within a given level X. The optimization algorithm is more likely to be stuck in a local minimum.
This does not affect the predictions of the phase transitions. However, the quantitative predictions of the quantum
properties in the extrapolated phase may be affected. Both of these points are illustrated in Figure SM 5 (upper
right panel). To prevent this problem, in the present work, we stop the optimization algorithm after three levels of
optimization for the results in Figures 2, 3 (upper panel) and 4. For the results in Figure 3 (lower panel), we stop the
optimization after four levels.

These results show that, if the goal is to predict the presence or absence of phase transitions, the method described
here can be used without validation. It is sufficient to ensure that subsequent levels of the kernel optimization
do not produce or eliminate phase transitions. If the goal is to predict quantitatively the quantum properties by
extrapolation, the training data must be divided into a training and validation sets. The models must then be trained
with the training set and the error calculated with the validation set. The kernel optimization must then be stropped
at the level of the diagram in Figure 1, where the error is the smallest. This is one of the approaches to prevent the
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Fig. SM 4: Improvement of the phase diagram shown in Figure 3 (lower panel) of the main manuscript with the
kernel complexity increasing as determined by the algorithm depicted in Figure 1 of the main manuscript. The panels
correspond to the optimized kernels GPL-0 (upper left), GPL-1 (upper right), GPL-2 (lower left), GPL-3 (lower right),

where “GPL-X” denotes the optimal kernel obtained after X depth levels.

overfitting problem in machine learning with artificial neural networks.

III. QUANTUM CALCULATIONS TO OBTAIN TRAINING DATA

A. Polaron models

For the polaron models, we use the Momentum Average (MA) approximation yielding accurate results for the
polaron energies in one-dimensional lattices of infinite size [7–9].

The MA approach is a non-perturbative quasi-analytical technique designed to solve the equation of motion for
the Green’s function Ĝ(k, ω) = 〈k| (ω − Ĥ + iη)−1 |k〉. We use the Dyson’s identity Ĝ(ω) = Ĝ0(ω) + Ĝ(ω)V̂ Ĝ0(ω) to

generate the hierarchy of equations of motion. Ĝ(ω) = (ω−Ĥ+iη)−1, Ĝ0(ω) = (ω−Ĥ0+iη)−1 with Ĥ0 = Ĥ− V̂e−ph,

and V̂ = V̂e−ph is the electron-phonon coupling term. This hierarchy consists of an infinite set of coupled equations
making an exact solution impossible.

The MA approach acts to guide an insightful approximation/truncation of the hierarchy allowing for efficient yet
accurate computations by neglecting the exponentially small diagrams in the expansion. The set of diagrams retained
in the hierarchy is identified by considering the variational meaning of MA: one allows for boson excitations only
within a finite spatial cut-off from the electron in the polaron cloud [8].

This choice of the variational space depends on the details of the Hamiltonian and states of interest [8]. For the
Holstein model, a one-site phonon cloud suffices to provides accurate results for single polarons [7, 8] and for tightly
bound bipolarons [10]. For the SSH model, the coupling to phonons is non-local and therefore a bigger cloud is
required to yield accurate results. A three-site phonon cloud MA has been shown to be very accurate for such models
[6, 12–15].

By design, the MA approach computes the proprieties of polarons in infinite lattices by utilizing the momentum
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Fig. SM 5: Upper left: Schematic diagram of the kernel combinations with the highest BIC. Upper right: Effect of the
increasing kernel complexity on the extrapolation accuracy. “GPL-X” denotes the results with the kernel obtained after
X depth levels depicted in the upper left panel (e.g. GPL-0 is kRQ and GPL-1 is kRQ × kLIN + kRBF ). Lower panels:
polaron dispersions predicted by the GP model with the kernel kRQ (left panel) and kernel kRQ × kLIN + kRBF obtained
at the GPL-2 level (right panel). The dashed curves show the GP model predictions, while the solid curves are the results

from Ref. [6]. The GP models are trained by the quantum results at λSSH ≤ 0.5.

space representation. Therefore, finite size effects have no relevance.
The MA data used in this work are of the three-site variational flavor and have been confirmed to be in quantitative

agreement with numerically exact results. The SSH polaron results were verified against the Bold Diagrammatic
Quantum Monte Carlo results in Ref. [6], whereas more complicated extensions have been verified against the
Variational Exact Diagonalization in Refs. [13–15].

The polaron energy is obtained from the lowest discrete peak in the imaginary part of the Green’s function.

B. Mean-free energy of the Heisenberg model

Here we present the derivation of the dimensionless mean-field free energy density of the Heisenberg model we
study with the GP method to predict the transition from ferromagnetic to paramagnetic phase. The Heisenberg
model Hamiltonian reads

H = −J
2

∑
〈i,j〉

S̄i · S̄j , (12)

where 〈i, j〉 only account for nearest-neighbour interactions between different spins S̄i. The free energy of the Heisen-
berg model in the mean-field approximation is a function of the magnetization m and the temperature T [16],

F (m,T ) =
JzNm2

2(gµB)2
−NT ln

[
2 cosh

(
Jzm

2TgµB

)]
, (13)

where m is defined as m = gµB〈S̄i〉 and z is the coordination number. The Boltzmann constant is set to 1 throughout
this section.
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Taylor expanding F (m,T ) near the transition, where m is vanishingly small, we obtain

F (m,T ) =
JzNm2

2(gµB)2
−NT

[
ln(2) +

1

2

(
Jz

2TgµB

)2

m2 − 1

12

(
Jz

2TgµB

)4

m4 + · · ·
]
. (14)

To find the critical transition temperature Tc, we minimize F (m,T ): ∂F
∂m = 0. Solving graphically, we obtain Tc = Jz

4
[16]. We then divide F (m,T ) by N and Tc after subtracting F (0, T ) to obtain the shifted free energy density

f(m,T ) =
Jz

2 (gµB)
2

[
1− Tc

T

]
m2 +

4

3 (gµB)
4

(
Tc
T

)3

m4. (15)

The last step is to define the dimensionless magnetization m̃ = 2m
gµB

, yielding

f(m̃, T ) =
1

2

[
1− Tc

T

]
m̃2 +

1

12

(
Tc
T

)3

m̃4 (16)

This is Eq. (12) in the main text, where the tilde over m has been omitted to simplify the notation.
The shape of the magnetization dependence of the free energy density changes with T . At Tc

T < 1, the minimizer

of f(m̃, T ), i.e. the order parameter (here denoted as m0) is m0 = 0; while for Tc

T > 1, m0 6= 0. This is illustrated
in Figure 4 of the main text for Jz = 5, i.e. Tc = 1.25. This form of f(m̃, T ) can be equivalently obtained through
the phenomenological Landau theory of phase transitions [16]. We use GP regression with kernel combinations to
extrapolate the free energy density acrtoss the phase transition.
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